Abstract

The sound velocities and single‐crystal elastic moduli of hydrous γ‐Mg2SiO4 (ringwoodite) containing 2.3 wt% of H2O have been measured by Brillouin spectroscopy at high pressures to 23.4 GPa, spanning the pressure range in Earth's transition zone. The resulting pressure derivatives of the adiabatic bulk modulus, K′S, and shear modulus, μ′, are 4.4(1) and 1.7(1) respectively. Compared with results for anhydrous ringwoodite, the pressure derivatives of the elastic moduli are consistent with an increase due to hydration of as much as 7% for the K′S and 30% for μ′, depending on the data sets used for comparison. However, the gradients of velocity as a function of pressure for hydrous ringwoodite are significantly less than the corresponding gradients in the Earth's transition zone. We conclude that transition zone seismic velocity gradients are not due to “wet” ringwoodite, as previously speculated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.