Abstract

Eight diamond-like structures (tubulanes) of different morphology based on carbon nanotubes are studied by the combination of molecular dynamics simulation and analytical calculations. Molecular dynamics is used for the structure relaxation, stability analysis, and calculation of the stiffness and compliance coefficients of stable tubulanes. Six stable tubulanes which can be elastically deformed are distinguished among the considered structures. Engineering elastic constants such as Young's modulus, Poisson's ratio, shear modulus, and bulk modulus are found by analytical methods. Two of the studied structures, TA6 and TB, are found to be partial auxetics having negative Poisson's ratio with the minimum values of −0.01 and −0.8, respectively. The maximum Young's modulus for tubulanes TA6, TA8, and TB is found to be >1 TPa. In combination with hardness close to that of diamond, considered phases with their outstanding mechanical properties can be potentially used as protective coatings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.