Abstract
The elasticity of the connecting filament--the filament that anchors the thick filament to the Z-line--has been investigated using rigor release, freeze-break and immunolabelling techniques. When relaxed insect flight muscle was stretched and then allowed to go into rigor, then released, the recoil forces of the connecting filaments caused sarcomeres to shorten. Thin filaments, prevented from sliding by rigor links, were found crumpled against the Z-line. Thus, rigor release experiments demonstrate the spring-like nature of the connecting filaments in insect flight muscle. In vertebrate skeletal muscle, however, the same protocol did not result in sarcomere shortening. Absence of shortening was due to either smaller stiffness of connecting filaments and/or higher stiffness of the thin filaments relative to insect flight muscle. The spring-like nature of the connecting filament was confirmed with the freeze break technique. When the frozen sarcomeres were broken along the A-I junction, the broken connecting filaments retracted to the N1-line level, independently of the thin filaments, demonstrating the basic elastic nature of these filaments. To study the elastic properties of the connecting filaments along the sarcomere, the muscle was labelled with monoclonal antibodies against a titin epitope near the N1-line, and another very near the A-I junction in the I-band. Before labelling, fibers were pre-stretched to varying extents.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.