Abstract

Nanopaper is a transparent film made of network-forming nanocellulose fibers. These fibers are several micrometers long with a diameter of 4–50 nm. The reported elastic modulus of nanopaper often falls short of even conservative theoretical predictions based on the modulus of crystalline cellulose, although such predictions usually perform well for other fiber composite materials. We investigate this inconsistency and suggest explanations by identifying the critical factors affecting the stiffness of nanopaper. A similar inconsistency is found when predicting the stiffness of conventional paper, and it is usually explained by the effects introduced during drying. We found that the effect of the drying cannot solely explain the relatively low elastic modulus of nanopaper. Among the factors that showed the most influence are the presence of non-crystalline regions along the length of the nanofibers, initial strains and the three-dimensional structure of individual bonds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call