Abstract

In the field of supercomputing, one key issue for scal-able shared-memory multiprocessors is the design of the directory which denotes the sharing state for a cache block. A good direc-tory design intends to achieve three key attributes: reasonable memory overhead, sharer position precision and implementation complexity. However, researchers often face the problem that gain-ing one attribute may result in losing another. The paper proposes an elastic pointer directory (EPD) structure based on the analysis of shared-memory applications, taking the fact that the number of sharers for each directory entry is typical y smal . Analysis re-sults show that for 4 096 nodes, the ratio of memory overhead to the ful-map directory is 2.7%. Theoretical analysis and cycle-accurate execution-driven simulations on a 16 and 64-node cache coherence non uniform memory access (CC-NUMA) multiproces-sor show that the corresponding pointer overflow probability is reduced significantly. The performance is observed to be better than that of a limited pointers directory and almost identical to the ful-map directory, except for the slight implementation complex-ity. Using the directory cache to explore directory access locality is also studied. The experimental result shows that this is a promis-ing approach to be used in the state-of-the-art high performance computing domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.