Abstract
A micromechanics investigation was performed in the present work to analyze the stress field in a coated continuous fibrous composite subjected to thermal and mechanical loading based on a four-concentric-cylinders model. A temperature-independent stress-plastic strain relationship for the metallic matrix and coating layer with linear strain-hardening behaviour were introduced. Tresca’s yield criterion and the associated flow law were employed to derive the governing equation of the coating and matrix. The closed-form solution of the governing equation was obtained. Some numerical examples were given. The numerical results indicate that the plasticity of the coating greatly decreases the circumferential and axial stresses in the coating itself, but has very limited influence on the stresses in other constituents of the composite. The plasticity of the matrix imposes no significant influence on all the stresses in the composite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.