Abstract

Abstract To verify a linear relation between normalized mechanical property and moisture ratio, in-plane tensile tests were performed on four types of paperboard from different manufacturers. Tensile properties were normalized with respect to the property at standard climate (50 % RH, 23 °C). Short-span Compression Tests were also performed to investigate if the relation was linear also for in-plane compression. The tests were performed at different relative humidity (20, 50, 70 and 90 % RH) but with constant temperature (23 °C) in MD and CD, respectively. The linear relation was confirmed for the normalized mechanical properties investigated. In fact, when also the moisture ratio was normalized with the standard climate, all paperboards coincided along the same line. Therefore, each mechanical property could be expressed as a linear function of moisture ratio and two parameters. Moreover, an in-plane bilinear elastic-plastic material model was suggested, based on four parameters: strength, stiffness, yield strength and hardening modulus, where all parameters could be expressed as linear functions of moisture ratio. The model could predict the elastic-plastic behavior for any moisture content from the two parameters in the linear relations and the mechanical properties at standard climate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call