Abstract

This paper presents a numerical analysis of crater blasting in steel fiber reinforced concrete (SFRC). In order to model the nonlinear damage-softening behavior of SFRC, the effective stress and effective plastic strain curve is tabulated and used as input for the material Type10 (MAT_ELASTIC_PLASTIC_HYDRO) available in LS-DYNA. The Gruneisen equation of state (EOS) is used to model the pressure volume relationship. With the two erosion criteria namely tensile cut-off and failure strain incorporated, the crater blasting in SFRC is simulated. Numerical results show that the adopted model and high-pressure EOS can well capture the main characteristics and failure process of SFRC under blast loading, and the related parameters can be determined conveniently. In addition, the volume fraction of fibers exerts a significant influence on the dimension of blast-induced crater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call