Abstract

AbstractThe development of more powerful and efficient aero-engines requires ways of increasing the torque transmitted by shafts, whilst also restricting their dimensions and weight. Thin-walled designs can assist this objective, but their use is limited by their torsional collapse behaviour. Of particular interest are conditions leading to buckling instability. The paper investigates the factors influencing this behaviour in order to provide the basis for an improved analysis method applicable to typical gas turbine aero-engine components.The Riks finite element algorithm has been successfully applied to both plain shafts and shafts with holes. In the former case, it is shown that the perfect cylindrical geometry must be given an initial perturbation in order to give accurate predictions. The perturbation imposed is obtained by scaling the mode shape from an eigenvalue solution so that the maximum radial deformation is a percentage of the wall thickness. The predictions for both plain and holed shafts have been validated experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.