Abstract

A spring lattice model with the ability to simulate elastic-plastic-brittle transitions in a disordered medium is presented. The model is based on bilinear constitutive law defined at the spring level and power-law-type disorder introduced in the yield and failure limits of the springs. The key parameters of the proposed model effectively control the disorder distribution, significantly affecting the stress-strain response, the damage accumulation process, and the fracture surfaces. The model demonstrates a plastic strain avalanche behavior for perfectly plastic as well as hardening materials with a power-law distribution, in agreement with the experiments and related models. The strength of the model is in its generality and ability to interpolate between elastic-plastic hardening and elastic-brittle transitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call