Abstract
This paper studies dynamic responses of AP1000 nuclear island structure in strong earthquake sequences. A numerical model to simulate nuclear structural behaviors in earthquake is validated by comparison with data from a previous study on a nonlinear dynamic analysis of a reinforced concrete shield building. The validated numerical model is then used to carry out a series of parametric analyses with 112 computational cases so as to determine influence of strong aftershocks on structural elastic-plastic behavior considering input of three-dimensional ground motions. The results indicate that the influence of aftershocks on structural horizontal/vertical dynamic responses is very small in design basis earthquake sequences. However, the influence must be considered seriously in beyond-design basis earthquake sequences as values of RMVs (Ratio of Mean Value) deviating IPRs (Input Peak Ratio) obviously, which means structural dynamic responses are greatly changed in strong aftershocks. Damage aggravating effect induced by strong aftershocks can cause severe damage of structural members and it is found the greater the magnitude of aftershocks, the severer the aggravation effect. Although earthquake input energy is mostly dissipated by damping energy, plastic damage energy plays considerable role in strong aftershocks as it shares beyond 8 percent of the total input energy, which is 10 times more compared to design basis earthquake sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.