Abstract

In this paper, formulation of elastic-plastic analysis of functionally graded (FG) spherical pressure vessels under internal pressure based on strain gradient plasticity is presented. The material properties are assumed to vary in a power law manner in the radial direction. A linear hardening rule for the material behavior in the plastic region is assumed. After deriving the governing differential equations, a closed form solution is obtained. At the first step, the obtained results were validated against other available results in the literature. Then the effects of changing the inner radius from a few micro-meters to one meter, FG power index and strain gradient coefficient on stress and plastic region size are studied based on classical and strain gradient theories. Also, the effect of internal pressure on the size of plastic region is studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.