Abstract

We observe an elastic percolation transition in the yield stress (τy) of cobalt-nanowire magnetorheological fluids, with a critical volume fraction of ferromagnetic particles (pc) that increases with the applied magnetic field (H). Unlike studies of static percolation phenomena, our observations reveal percolation in a dynamic, fluid-semisolid system. The elastic critical exponent (f) appears to be independent of H, having a value in the range of 1.0–1.2, near that seen in various two-dimensional networks. The superelastic exponent (c) decreases with increasing H and is smaller than that seen in typical networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.