Abstract
Two-phase microstructure of ordered cube-shaped precipitates in the disordered matrix is characteristic of Ni-base superalloys. This microstructure degrades under the applied stress: depending on the stress direction, lattice misfit and elastic parameters of both constituent phases, the precipitates coalesce and change their overall shape. Various atomic configurations were modeled in this work representing various morphologies of precipitates developed under applied stress. A model Ni-base alloy containing six alloying elements typical of advanced Ni-based superalloys was used. Generated configurations were further subject to study of elastic parameters by means of computer straining experiments. Relaxation of atomic positions in the strained crystal blocks was implemented using molecular dynamics calculations with phenomenological Lennard-Jones pair potentials and interactions involving three coordination spheres. Changes of elastic parameters due to varying precipitates morphology are discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.