Abstract
In this paper a novel wavelength region selection algorithm, called elastic net grouping variable selection combined with partial least squares regression (EN-PLSR), is proposed for multi-component spectral data analysis. The EN-PLSR algorithm can automatically select successive strongly correlated prediction variable groups related to the response variable using two steps. First, a portion of the correlated predictors are selected and divided into subgroups by means of the grouping effect of elastic net estimation. Then, a recursive leave-one-group-out strategy is employed to further shrink the variable groups in terms of the root mean square error of cross-validation (RMSECV) criterion. The performance of the algorithm with real near-infrared (NIR) spectroscopic data sets shows that the EN-PLSR algorithm is competitive with full-spectrum PLS and moving window partial least squares (MWPLS) regression methods and it is suitable for use with strongly correlated spectroscopic data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.