Abstract
We present a new method for morphing 2D and 3D objects. In particular we focus on the problem of smooth interpolation on a shape manifold. The proposed method takes advantage of two recent works on 2D and 3D shape analysis to compute elastic geodesics between any two arbitrary shapes and interpolations on a Riemannian manifold. Given a finite set of frames of the same (2D or 3D) object from a video sequence, or different expressions of a 3D face, our goal is to interpolate between the given data in a manner that is smooth. Experimental results are presented to demonstrate the effectiveness of our method.KeywordsRiemannian ManifoldControl PointEuclidean PlaneClosed CurfLagrange InterpolationThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.