Abstract

AbstractThe five independent elastic moduli C11, C12, C13, C33, and C44 of oriented high‐density polyethylene with draw ratio λ from 1 to 27 have been determined from −60 to 100°C by an ultrasonic method at 10 MHz. At low temperature the sharp rise in the axial extensional modulus C33 with increasing λ and the slight changes in the other moduli result from chain alignment and the increase in the number of intercrystalline bridges connecting the crystalline blocks. At high temperature (say, 100°C) the transverse extensional modulus C11, as well as the axial (C44) and transverse (C66) shear moduli, also show substantial increases, reflecting the prominent reinforcing effect of stiff crystalline bridges in this temperature region where the amorphous matrix is rubbery. If the crystalline bridges are regarded as the fiber phase, the mechanical behavior can be understood in terms of the Halpin–Tsai equation for aligned short‐fiber composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.