Abstract

This paper reports a study of the elastic behavior of multi-walled carbon nanotubes (MWCNTs). The nested individual layers of an MWCNT are treated as single-walled frame-like structures and simulated by the molecular structural mechanics method. The interlayer van der Waals forces are represented by Lennard–Jones potential and simulated by a nonlinear truss rod model. The computational results show that the Young's moduli and shear moduli of MWCNTs are in the ranges of 1.05±0.05 and 0.40±0.05 TPa, respectively. Results indicate that the tube diameter, tube chirality and number of tube layers have some noticeable effects on the elastic properties of MWCNTs. Furthermore, it has been demonstrated that the inner layers of an MWCNT can be effectively deformed only through the direct application of tensile or shear forces, not through van der Waals interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.