Abstract

Extensive numerical simulations of rigidity percolation with only central forces in large three-dimensional lattices have indicated that many of their topological properties undergo a first-order phase transition at the rigidity percolation threshold p_{ce}. In contrast with such properties, past numerical calculations of the elastic moduli of the same lattices had provided evidence for a second-order phase transition. In this paper we present the results of extensive simulation of rigidity percolation in large body-centered cubic (bcc) lattices, and show that as the linear size L of the lattice increases, the elastic moduli close to p_{ce} decrease in a stepwise, discontinuous manner, a feature that is absent in lattices with L<30. The number and size of such steps increase with L. As p_{ce} is approached, long-range, nondecaying orientational correlations are built up, giving rise to compact, nonfractal clusters. As a result, we find that the backbone of the lattice at p_{ce} is compact with a fractal dimension D_{bb}≈3. The absence of fractal, scale-invariant clusters, the hallmark of second-order phase transitions, together with the stairwise behavior of the elastic moduli, provide strong evidence that, at least in bcc lattices, many of the topological properties of rigidity percolation as well as its elastic moduli may undergo a first-order phase transition at p_{ce}. In relatively small lattices, however, the boundary effects interfere with the nonlocal nature of the rigidity percolation. As a result, only when such effects diminish in large lattices does the true nature of the phase transition emerge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call