Abstract

The theoretical analysis for the elastic moduli and plastic collapse strength of hexagonal honeycombs with Plateau borders is proposed and presented here. The variation of cell edge thickness in real honeycombs is taken into account in deriving their elastic moduli and plastic collapse strengths. A repeating element, composed of three cell edges connected at a vertex with Plateau borders of constant radius of curvature and width, is employed to calculate the elastic moduli and plastic collapse strength of hexagonal honeycombs. Results suggest that both the elastic moduli and plastic collapse strength of hexagonal honeycombs with Plateau borders depend on their relative density and the volume fraction of solid contained in the Plateau border region. Meanwhile, effects of solid distribution on the elastic moduli and plastic collapse strength of hexagonal honeycombs are investigated, providing a guideline for the optimal microstructure design of honeycombs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.