Abstract

Experimental investigations have revealed that the Neerfeld–Hill and Eshelby–Kröner models, for grain interactions in massive, bulk (in particular, macroscopically isotropic) polycrystals, and a recently proposed effective grain-interaction model for macroscopically anisotropic polycrystals, as thin films, provide good estimates for the macroscopic (mechanical and) X-ray elastic constants and stress factors of such polycrystalline aggregates. These models can also be used to calculate the strain variation among the diffracting crystallites, i.e. the diffraction-line broadening induced by elastic grain interactions can thus be predicted. This work provides an assessment of diffraction-line broadening induced by elastic loading of polycrystalline specimens according to the various grain-interaction models. It is shown that the variety of environment, and thus the heterogeneity of the stress–strain states experienced by each of the individual grains exhibiting the same crystallographic orientation in a real polycrystal, cannot be accounted for by traditional grain-interaction models, where all grains of the same crystallographic orientation in the specimen frame of reference are considered to experience the same stress–strain state. A significant degree of broadening which is induced by the heterogeneity of the environments of the individual crystallites is calculated on the basis of a finite element algorithm. The obtained results have vast implication for diffraction-line broadening analysis and modelling of the elastic behaviour of massive polycrystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.