Abstract

A general, global theory is developed for nano-scaled functionally graded films considering surface effects. In addition to the Kirchhoff hypothesis of the classical thin plate theory, the surface layers of the film are modeled by the continuum theory of surface elasticity. Bulk stresses on the surfaces are required to satisfy the surface balance conditions involving surface stresses. Unlike the classical plate theory, the bulk transverse normal stress is preserved here. By incorporating the surface energies into the principle of minimum potential energy, a series of non-classical governing differential equations which include intrinsic length scales are derived. To illustrate application of the theory, a simply supported nano-scaled film in cylindrical bending is investigated. Numerical examples are presented to clarify the effects of surface energies on the bending behavior of FGM films, whose effective elastic moduli are predicted using the Mori–Tanaka method. Finally, the nature of intrinsic length scales, and the effects of gradient index and aspect ratio on the displacements are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.