Abstract

Biological cells in soft materials can be modeled as anisotropic force contraction dipoles. The corresponding elastic interaction potentials are long ranged (approximately 1/r3 with distance r) and depend sensitively on elastic constants, geometry, and cellular orientations. On elastic substrates, the elastic interaction is similar to that of electric quadrupoles in two dimensions and for dense systems leads to aggregation with herringbone order on a cellular scale. Free and clamped surfaces of samples of finite size introduce attractive and repulsive corrections, respectively, which vary on the macroscopic scale. Our theory predicts cell reorientation on stretched elastic substrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.