Abstract

The kinetics of elastically interacting screw dislocations has been studied in pure iron strained in situ at low temperature. Annihilating and expanding screw dipoles yield macroscopic activation areas which are substantially smaller than those deduced from conventional mechanical stress, but consistent with theoretical estimates. The kinetics of attractive intersecting screw dislocations indicates that their velocity is determined by the velocity of their most stressed parts. Repulsive screw dislocations with different Burgers vectors can move cooperatively at a surprisingly high velocity, probably on account of elastic torque interactions and twinning-anti-twinning effects. All these interactions are shown to play an important role in the description of macroscopic mechanical properties in terms of individual dislocation mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.