Abstract

A complete solution has been obtained for the problem of multiple interacting spherical inhomogeneities with a Gurtin–Murdoch interface model that includes both surface tension and surface stiffness effects. For this purpose, a vectorial spherical harmonics-based analytical technique is developed. This technique enables solution of a wide class of elasticity problems in domains with spherical boundaries/interfaces and makes fulfilling the vectorial boundary or interface conditions a routine procedure. A general displacement solution of the single-inhomogeneity problem is sought in a form of a series of the vectorial solutions of the Lame equation. This solution is valid for any non-uniform far-field load and it has a closed form for polynomial loads. The superposition principle and re-expansion formulas for the vectorial solutions of the Lame equation extend this theory to problems involving multiple inhomogeneities. The developed semi-analytical technique precisely accounts for the interactions between the nanoinhomogeneities and constitutes an efficient computational tool for modeling nanocomposites. Numerical results demonstrate the accuracy and numerical efficiency of the approach and show the nature and extent to which the elastic interactions between the nanoinhomogeneities with interface stress affect the elastic fields around them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.