Abstract

The concepts of future mobility such as autonomous, connected, electric and shared vehicles are bringing a huge revolution to the automotive sector. We are seeing technologies typical from data centers fully embedded into vehicles, shifting from a mechanical-centric product, to an electronics-centric one. All the sensors and actuators embedded in vehicles need to exchange data in real time, in a safe and reliable way. As a result, the field of in-vehicle network (IVN) processing is currently an active research area. In previous work, we derived the requirements of future vehicle network processors and analyzed the state of the art of network processing platforms. From our study we concluded that there is currently no solution available capable of fulfilling all the requirements with the right level of performance. Now, in this work, we evaluate the novel Elastic Gateway (eGW) architecture which aims at fulfilling this gap, advancing towards future Gateway System/Network on Chip (SoC/NoC) solutions. Elastic Gateway SoC concept aims at synthesizing a scalable and future proof architecture embracing all new and already established functions and features demanded in a zonal gateway controller for the new era of mobility. It is composed of a set of configurable IP cores that allow for a full HW-based datapath implementation targeting good enough Quality of Service (QoS) and the minimum possible latency. We provide details of the internal architecture and how the different technologies required in future IVNs are integrated in eGW. With this, we are able to show how eGW meets the requirements of future network processing devices, enabling thus the current revolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call