Abstract
The use of elastic analysis is prevalent in the design of building structures even under loading conditions where inelasticity would be expected. Accordingly, geometric and material properties used in the elastic analyses must be carefully selected to maintain accuracy. Steel-concrete composite columns experience different forms of inelasticity. Concrete cracking is the source of much of the inelasticity and occurs at relatively low levels of load, but partial yielding of the steel, slip between concrete and steel, and concrete crushing also contribute to losses in stiffness. In this paper, the behavior of composite columns is characterized at the cross section and member levels through comparisons between inelastic and elastic analyses. Then, through a broad parametric study, specific practical design recommendations are developed for the elastic flexural rigidity of composite columns for the determination of lateral drifts under service loads. The recommendations in this paper provide simple and robust values for the stiffness of composite columns to be used for drift computations involving lateral loads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.