Abstract

In this work, models based on conventional small-strain elasticity theory are developed to evaluate the stress fields in the vicinity of a quantum dot or an ordered array of quantum dots. The models are based on three different approaches for solving the elastic boundary value problem of a misfitting inclusion embedded in a semi-infinite space. The first method treats the quantum dot as a point source of dilatation. In the second approach we approximate the dot as a misfitting oblate spheroid, for which exact analytic solutions are available. Finally, the finite element method is used to study complex, but realistic, quantum dot configurations such as cuboids and truncated pyramids. We evaluate these three levels of approximation by comparing the hydrostatic stress component near a single dot and an ordered array of dots in the presence of a free surface, and find very good agreement except in the immediate vicinity of an individual quantum dot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.