Abstract
The surface energy plays a significant role in solids and structures at the small scales, and an explicit expression for surface energy is prerequisite for studying the nanostructures via energy methods. In this study, a general formula for surface energy at finite deformation is constructed, which has simple forms and clearly physical meanings. Next, the strain energy formulas both for isotropic and anisotropic surfaces under small deformation are derived. It is demonstrated that the surface elastic energy is also dependent on the nonlinear Green strain due to the impact of residual surface stress. Then, the strain energy formula for residually stressed elastic solids is given. These results are instrumental to the energy approach for nanomechanics. Finally, the proposed results are applied to investigate the elastic stability and natural frequency of nanowires. A deep analysis of these two examples reveals two length scales characterizing the significance of surface energy. One is the critical length of nanostructures for self-buckling; the other reflects the competition between residual surface stress and surface elasticity, indicating that the surface effect does not always strengthen the stiffness of nanostructures. These results are conducive to shed light on the importance of the residual surface stress and the initial stress in the bulk solids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.