Abstract

The results of first-principles theoretical study of the structural, electronic and optical properties of zinc monochacogenides ZnS, ZnSe and ZnTe, have been performed using the full-potential linear augmented plane-wave method plus local orbitals (FP-APW + lo) as implemented in the WIEN2k code. In this approach the local density approximation (LDA) is used for the exchange-correlation (XC) potential. Results are given for lattice constant, elastic constant, bulk modulus, and its pressure derivative. The band structure, density of states, pressure coefficients of elastic constants, energy gaps and refractive indices are also given. The results are compared with previous theoretical calculations and the available experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.