Abstract
ABSTRACTA computational technique is developed to predict the statistics of internal elastic fields of three-dimensional dislocation systems in deforming crystals. The internal elastic fields are computed based on 3D dislocation realizations generated by the method of dislocation dynamics simulation. Preliminary results are presented for the statistical characteristics of the elastic strain, lattice rotation and dislocation density tensor fields. The importance of the current analysis is discussed in the context of direct comparison of simulations with spatially resolved 3D X-ray microscopy measurements of lattice rotation and the dislocation density tensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.