Abstract

Customized compute acceleration in the datacenter is key to the wider roll-out of applications based on deep neural network (DNN) inference. In this article, we investigate how to maximize the performance and scalability of field-programmable gate array (FPGA)-based pipeline dataflow DNN inference accelerators (DFAs) automatically on computing infrastructures consisting of multi-die, network-connected FPGAs. We present Elastic-DF, a novel resource partitioning tool and associated FPGA runtime infrastructure that integrates with the DNN compiler FINN. Elastic-DF allocates FPGA resources to DNN layers and layers to individual FPGA dies to maximize the total performance of the multi-FPGA system. In the resulting Elastic-DF mapping, the accelerator may be instantiated multiple times, and each instance may be segmented across multiple FPGAs transparently, whereby the segments communicate peer-to-peer through 100 Gbps Ethernet FPGA infrastructure, without host involvement. When applied to ResNet-50, Elastic-DF provides a 44% latency decrease on Alveo U280. For MobileNetV1 on Alveo U200 and U280, Elastic-DF enables a 78% throughput increase, eliminating the performance difference between these cards and the larger Alveo U250. Elastic-DF also increases operating frequency in all our experiments, on average by over 20%. Elastic-DF therefore increases performance portability between different sizes of FPGA and increases the critical throughput per cost metric of datacenter inference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.