Abstract

Based upon the fundamental solution to a single straight dislocation segment, a complete set of exact closed‐form solutions is presented in a unified manner for elastic displacements and strains due to general polygonal dislocations in a transversely isotropic half‐space. These solutions are systematically composed of two parts: one representing the solution in an infinite transversely isotropic medium and the other accounting for the influence of the free surface of the half‐space. Numerical examples are provided to illustrate the effect of material anisotropy on the elastic displacement and strain fields associated with dislocations. It is shown that if the rock mass is strongly anisotropic, surface displacements calculated using an isotropic model may result in errors greater than 20%, and some of the strain components near the fault tip may vary by over 200% compared with the transversely isotropic model. Even for rocks with weak anisotropy, the strains based on the isotropic model can also result in significant errors. Our analytical solutions along with the corresponding MATLAB source codes can be used to predict the static displacement and strain fields due to earthquakes, particularly when the rock mass in the half‐space is best approximated as transversely isotropic, as is the case for most sedimentary basins. Online Material: MATLAB scripts to calculate rectangular and triangular dislocations in a transversely isotropic half‐space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.