Abstract

In this work we report on a theoretical study on elastic electron collisions with ketenylidene radicals in the low and intermediate energy range. Calculated differential and momentum transfer cross sections for the e{sup -}-C{sub 2}O collision are reported in the (1-500)-eV range. A complex optical potential composed by static, exchange, correlation-polarization plus absorption contributions, derived from a fully molecular wave function, is used to describe the interaction dynamics. The Schwinger variational iterative method combined with the distorted-wave approximation is applied to calculate scattering amplitudes. Comparison made between our calculated cross sections with the theoretical and experimental results for elastic e{sup -}-N{sub 2}O collisions has revealed remarkable similarity for incident energies equal to 20 eV and above. Also, two shape resonances located at around 3 eV and 4.5 eV are observed and identified as due to the {sup 2}{pi} and the {sup 4}{pi} scattering channels, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.