Abstract

Tetramethyltin [Sn(CH3)4] and trimethylgallium [Ga(CH3)3] are important source molecules of Sn and Ga atoms which are used in manufacturing techniques involving low-temperature plasmas. Accurate numerical modeling of plasma environments requires a comprehensive set of electron scattering cross sections by these precursor molecules. Here, we report the elastic integral, differential, and momentum transfer cross sections for electron collisions with Sn(CH3)4 and Ga(CH3)3 for energies ranging from 0 to 30 eV. Our calculations were carried out with the Schwinger multichannel method implemented with pseudopotentials and considered two levels of approximation in our calculations, namely static-exchange and static-exchange plus polarization. We identified three shape resonances for Sn(CH3)4 and one clear low-lying resonance for Ga(CH3)3. The low-energy behavior of the s-wave cross section and eigenphase was investigated and, for both molecules, we found evidence of a Ramsauer–Townsend (RT) minimum and a virtual state. Our results indicate that negative differential conductivity would occur in a gas composed of Sn(CH3)4. On the other hand, this effect would be suppressed in a gas of Ga(CH3)3 due to an overlap between the position of the RT minimum and the shape resonance in the momentum-transfer cross section.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call