Abstract

The dynamics of a thixotropic silica aerosil gel dispersed in an octylcyanobiphenyl liquid crystal were directly probed by x-ray intensity fluctuation spectroscopy. For all samples, the time-autocorrelation function of the gel was well described by a modified-exponential function over the q range studied. Compared to a pure gel sample, a dilute (0.06 g cm(-3)) gel embedded within the liquid crystal displayed more complex and temperature dependent dynamics. Near the second-order smectic-A-to-nematic phase transition of the liquid crystal the gel relaxation became significantly more complex and slower (tau approximately 2150 s) compared to relaxations observed well within either phase. This clearly demonstrates coupling between the dynamics of the gel and the host liquid crystal, consistent with critical slowing down of smectic and director fluctuations. A random dampening field, elastically coupled to the liquid crystal, would explain the earlier observed crossover of this transition towards 3d-XY behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.