Abstract

The six independent second-order elastic stiffness coefficients of a Ti44Al56 single crystal (L10 structure) have been measured at room temperature for the first time using a resonant ultrasonic spectroscopy (RUS) technique. These data were used to calculate the orientation dependence of Young's modulus and the shear modulus. Young's modulus is found to reach a maximum near a [111] direction, close to the normal to the most densely packed planes. The elastic moduli and Poisson's ratio for polycrystalline materials, calculated by the averaging scheme proposed by Hill, are in good agreement with experimental data and theoretical calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.