Abstract

Abstract First-principles calculations are performed to study the structural and elastic properties, sound velocities, and Debye temperature of rocksalt-structured copper monochloride (CuCl) and copper monobromide (CuBr). The structural parameters, elastic constants, longitudinal, transverse, and average elastic wave velocities, and the Debye temperature in the pressure range 10–20 GPa are successfully predicted and analysed. The variation of the elastic constants and bulk modulus as a function of pressure is found to be non-linear for CuCl and almost linear for CuBr. Based on the obtained values of the elastic constants, the bulk modulus, the isotropic shear modulus, Young’s modulus, Poisson’s ratio, and Pugh’s ratio of the aggregate materials are also investigated. The analysis of Poisson’s and Pugh’s ratios shows that these materials become ductile for pressures in the range 10–20 GPa. The evolution of the longitudinal sound velocity under pressure indicates the hardening of the corresponding phonons in both materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.