Abstract

Abstract First-principles calculations are performed to study the structural and elastic properties, sound velocities, and Debye temperature of rocksalt-structured copper monochloride (CuCl) and copper monobromide (CuBr). The structural parameters, elastic constants, longitudinal, transverse, and average elastic wave velocities, and the Debye temperature in the pressure range 10–20 GPa are successfully predicted and analysed. The variation of the elastic constants and bulk modulus as a function of pressure is found to be non-linear for CuCl and almost linear for CuBr. Based on the obtained values of the elastic constants, the bulk modulus, the isotropic shear modulus, Young’s modulus, Poisson’s ratio, and Pugh’s ratio of the aggregate materials are also investigated. The analysis of Poisson’s and Pugh’s ratios shows that these materials become ductile for pressures in the range 10–20 GPa. The evolution of the longitudinal sound velocity under pressure indicates the hardening of the corresponding phonons in both materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call