Abstract
An elastic cables–rigid body coupled model is proposed for investigating dynamic interactions between cables’ nonlinear transversal vibrations and boundary tower’s torsional dynamics, arising in large transmission line–tower systems and suspended cable–bridge tower systems. By introducing a weak torsion assumption and a large moment of inertia for the tower, an asymptotic expansion of cables–tower coupled dynamics is conducted in a weakly nonlinear framework, and a cables–tower reduced coupled model is eventually established. After model’s validations using direct numerical simulations, two distinct kinds of coupled dynamics are fully investigated. The first is that an external torque is applied to the tower and the two cables would both be indirectly excited, asymmetrically, by the torsional/oscillating tower. The two cables’ responses are the same in this case. The second is that only one of the two cables, i.e., the leader cable, is directly excited, and the other cable, i.e., the follower one, is only indirectly excited through cables–tower dynamic interactions. In such kind of leader–follower dynamics, the leader cable is quite different from the follower one. Nonlinear coupled frequency response diagrams for both systems are constructed using numerical continuation algorithms, mainly focused on the coupled steady solutions’ stabilities and bifurcations. Furthermore, the dynamic effects of tower’s moment of inertia, wing span and damping are thoroughly investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.