Abstract

The aims of this work are two-fold: (i) to present the results of a study concerning the elastic in-plane stability and second-order behaviour of unbraced single-bay pitched-roof steel frames and (ii) to propose, validate and illustrate the application of an efficient methodology to design this type of commonly used frame. After (i) characterizing the relevant frame buckling modes and P – Δ second-order effects, and (ii) addressing the exact and approximate calculation of the associated bifurcation loads and secondary bending moments, the paper deals with the incorporation of these concepts in the definition of an efficient design procedure. In particular, it is clearly shown that, due to the rafter slope, the geometrically nonlinear behaviours of orthogonal beam-and-column and pitched-roof frames are qualitatively different. Finally, the proposed concepts and methodologies are illustrated through the presentation and discussion of numerical results involving fixed and pinned-base frames.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call