Abstract

Elastic behaviors of protein-like chains are investigated by Pruned–Enriched–Rosenbluth method and modified orientation-dependent monomer-monomer interactions model. The protein-like chain is pulled away from the attractive surface slowly with elastic force acting on it. Strong adsorption interaction and no adsorption interaction are both considered. We calculate the characteristic ratio and shape factor of protein-like chains in the process of elongation. The conformation change of the protein-like chain is well depicted. The shape of chain changes from “rod" to “sphere" at the beginning of elongation. Then, the shape changes from “sphere" to “rod". In the end, the shape becomes a “sphere" as the chain leaves away from the surface. In the meantime, we discuss average Helmoholtz free energy per bond, average energy per bond, average adsorbed energy per bond, average α-helical energy per bond, average β-sheet energy per bond and average contact energy per bond. On the other hand, elastic force is also studied. It is found that elastic force has a long plateau during the tensile elongation when there exists adsorption interaction. This result is consistent with SMFS experiment of general polymers. Energy contribution to elastic force and contact energy contribution to elastic force are both discussed. These investigations can provide some insights into the elastic behaviors of adsorbed protein chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.