Abstract

In this work, we report on a theoretical study of electron-CS2 collision in the low- and intermediate-energy range. More specifically, the elastic differential and integral cross sections as well as the grand total (elastic+inelastic) cross sections in the 0.05-100 eV range are reported. A complex optical potential consisting of static, exchange, correlation-polarization plus absorption contributions, derived from a fully molecular wavefunction, is used for the electron-molecule interaction. The Schwinger variational iterative method combined with the distorted-wave approximation are applied to calculate the scattering amplitudes. The comparison between the calculated results and the existing experimental and theoretical results is encouraging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.