Abstract

ABSTRACTRepresentative volume elements of syntactic foams with a random filling of short glass fibers and hollow glass microspheres in epoxy resin were established by a random sequential adsorption method. The fiber volume fraction was set at 4%, and the microsphere volume fraction range was from 5 to 30%. This numerical simulation was studied with ANSYS software. The influence on the elastic and plastic mechanical properties of syntactic foams of the microsphere volume fraction and relative wall thickness were investigated, and the plastic strain evolution process in the composites was analyzed. The results show that the compressive yield limit and Young's modulus values of the syntactic foams decreased with increasing microsphere volume fraction when the microsphere relative wall thickness was 0.02, but these properties were enhanced with increasing microsphere volume fraction when the relative wall thickness exceeded 0.04. The specific strength and tangent modulus values of the composites increased with increasing microsphere volume fraction. In addition, we observed that the yield stress, Young's modulus, and tangent modulus values of the syntactic foams were obviously enhanced by the addition of glass fibers. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 44188.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call