Abstract

Pseudopotential plane-wave method (PP–PW) based on density functional theory (DFT) and density functional perturbation theory (DFPT) within the Teter and Pade exchange-correlation functional form of the local spin density approximation (LSDA) is applied to study the effect of pressure on the elastic and piezoelectric properties of the (B3) boron–bismuth compound. The phase transition, the independent elastic stiffness constants, the bulk modulus, the direct and converse piezoelectric coefficients, the longitudinal, transverse, and average sound velocities, and finally the Debye temperature under pressure are studied. The results obtained are generally lower than the available theoretical data (experimental data are not available) reported in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.