Abstract

Lead chalcogenides, most notably lead selenide (PbSe) and lead telluride (PbTe), have become an active area of research due to their thermoelectric (TE) properties. The high figure of merit of these materials has brought much attention to them, due to their ability to convert waste heat into electricity. Recent efforts, such as applying pressure or doping, have shown an increase in TE efficiency. Variation in application and synthesis conditions gives rise to a need for analysis of mechanical properties of these materials. In addition to the rocksalt (NaCl) structure at ambient conditions, lead chalcogenides have an orthorhombic (Pnma) intermediate pressure phase and a higher pressure CsCl phase. By using first-principles calculations, performed within density functional theory, we study the structural, elastic and mechanical properties of PbTe and PbSe in their three phases. For each phase, elastic constants, bulk modulus, shear modulus, and Young's modulus are calculated, and the NaCl phase is studied with typical dopants, both n-type (Bi and I) and p-type (Na, In, and Tl). Pugh's ratio is employed to give insight on the brittleness of the materials and phase studied. The results presented here will be useful to guide future experiments toward the search for structurally stable TE materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.