Abstract

Phosphorus (P) is considered a possible light element alloying with iron (Fe) in the Earth's core due to its siderophile nature and the ubiquity of P-bearing iron alloys in iron meteorites. The sequestration of P by liquid metals during the core formation possibly results in the relatively low concentration of P in the bulk silicate Earth. In this study, we performed single-crystal and powder X-ray diffraction, synchrotron Mössbauer spectroscopy and nuclear resonant inelastic X-ray scattering measurements in diamond anvil cells to investigate the elastic and magnetic properties of Fe3P under high pressures. Our X-ray diffraction results suggest that there is no structural phase transition up to 111 GPa. However, a volume collapse was observed at 21.5 GPa in Fe3P, ascribed to a magnetic transition as evidenced by synchrotron Mössbauer spectroscopy results. Fitting the volume-pressure data by the Birch-Murnaghan equation of state gives bulk modulus KT0=162.4(7) GPa, its first pressure derivative KT0′=4.0 (fixed) and zero-pressure volume V0=370.38(6) Å3 for the magnetic phase and KT0=220(7) GPa, KT0′=4.0 (fixed) and V0=357(1) Å3 for the non-magnetic phase. Sound velocities of Fe3P were determined up to 152 GPa by nuclear resonant inelastic X-ray scattering, demonstrating that Fe3P bears a low shear velocity and high Poisson's ratio at core pressures compared to Fe and Fe3S. When forming a solid solution Fe3(S,P) with Fe3S at core pressures, Fe3P may favorably influence the elastic properties of Fe3(S,P) to match the seismic observations of the inner core.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call