Abstract

The elastic properties and electronic structures of partially ordered and disordered Zr(C1−xNx) solid solution compounds were investigated using first principles calculations to understand the effects of nitrogen content and atomic distribution. To obtain a proper exchange–correlation energy, we used local density and generalized gradient approximations with Perdew–Burke–Ernzerhof (LDA and GGA-PBE) parametrization. Partially ordered and disordered structures of Zr(C1−xNx) compounds were expressed using unit cell and special quasi-random structure (SQS) models, respectively. We demonstrated that although the disordered models have P1 symmetry with different model sizes and cell shapes compared with ordered models, they reproduce the equilibrium structure and elastic properties of the Zr(C1−xNx) compounds with B1 (Fm-3m) symmetry. However, clear differences exist in the electronic structures. Therefore, the atomic configuration is essential for calculating the electronic structures of the Zr(C1−xNx) compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.