Abstract

Bent-core liquid crystals present the first evidence of forming polar superstructures from achiral molecules. The nematic phase is the newest member of the bent-core family and turns out to be extremely interesting owing to its distinct features compared to its calamitic counterpart. Here the investigation of one achiral unsymmetrical 2-methyl-3-amino-benzoic acid (2,6-substituted toluene)-derived four-ring bent-core nematic (BCN) liquid crystals (11-2M-F) is presented after nanodispersion. Ferroelectric nanoparticles significantly affect the phase transition temperature, threshold voltage, dielectric permittivity, elastic constants and splay viscosity of the pristine BCN. In most bent-core nematic liquid crystals the bent elastic constant (K33) is usually lower than the splay elastic constant (K11) owing to the presence of short-range smectic-C-like correlations in the nematic phase. Thus the elastic anisotropy ([Formula: see text]) is usually negative in bent-core nematics unlike in rod-like nematic liquid crystals where K33 is always greater than K11. Here we report a short-core bent-shaped nematic liquid crystal whose negative elastic anisotropy was turned to positive by minute addition of ferroelectric nanoparticles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.