Abstract

Developing ceramic nanofibrous membranes for the thermal insulation layer of firefighting protective clothing is vital. However, previous ceramic nanofibrous membranes were brittle and easy to break during service in high-temperature environments. The lack of elastic and compressible properties has limited the high-end applications of ceramic nanofibrous membranes. In this work, elastic and compressible Al2O3/ZrO2/La2O3 nanofibrous membranes were fabricated via sol–gel electrospinning and calcination in air at different temperatures. The as-fabricated Al2O3/ZrO2/La2O3 nanofibrous membranes can maintain excellent elasticity and compressibility in the temperature ranging from −196 to 1400 °C. Moreover, they have low thermal conductivity and high working temperatures. These favorable characteristics make the Al2O3/ZrO2/La2O3 nanofibrous membranes a promising candidate for the thermal insulation layer of firefighting protective clothing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.