Abstract

A new method, using Miscibility Gap Alloy composites and Resonant Ultrasound Spectroscopy, has been developed to determine the temperature dependence of elastic and anelastic properties of metals up to and through their melting points. The experimental conditions of high frequency (f~106Hz) and low strain (<10−6) significantly extend the frequency range available for determining, in particular, the high temperature background of acoustic loss seen at temperatures greater than half the melting point. For Sn at T<450K and Bi, the frequency dependence of the loss appears to follow fn with n~0.2, assuming activation energies determined by lattice diffusion or pipe diffusion within dislocations. For Sn there appears to be a temperature interval up to the melting point with n≈1, which could be indicative of premelting. The same approach of using a soft metal matrix to support a second phase has also been demonstrated for measuring acoustic loss in powder samples of LaAlO3. It provides, in principle, a new method for determining elastic and anelastic properties of powder samples with grain sizes down to nanoscale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.